

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

EVALUATION OF A MULTI-AGENT SYSTEM FOR
SIMULATION AND ANALYSIS OF DISTRIBUTED

DENIAL-OF-SERVICE ATTACKS

by

Tee Huu, SAW

December 2003

 Thesis Advisor: James B. Michael
 Thesis Co-Advisor: Mikhail Auguston

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Evaluation of a Multi-Agent System for Simulation
and Analysis of Distributed Denial-of-Service Attacks
6. AUTHOR(S) Tee Huu, SAW

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for pubic release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 DDoS attack is evolving at a rapid and alarming rate; an effective solution must be formulated using an adaptive approach.
Most of the simulations are performed at the attack phase of the DDoS attack; thus the defense techniques developed focus
mainly on filtering and isolating the attack. In order to develop and verify the effectiveness of a defense strategy, we needed a
robust and flexible simulation tool. The Multi-Agent System Development Kit (MASDK) provided us a means to generate
DDoS attack in a safe experimental environment for testing and validating security solutions, starting from the implantation
phase: this allows researchers to develop new defense strategy even before the DDoS attack is launched. The paper begins
with the study of the characteristics of DDoS attacks, the types of detection-and-response techniques, and the available DDoS
attack simulation tools. The result generated by the MASDK simulation tool was used to evaluate the performance of the tool
in simulating the DDoS attack over the networking environment.

15. NUMBER OF
PAGES

72

14. SUBJECT TERMS

DDoS, MASDK, Simulation Tool, Attack Tool, Computer Network.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

EVALUATION OF A MULTI-AGENT SYSTEM FOR SIMULATION AND
ANALYSIS OF DISTRIBUTED DENIAL-OF-SERVICE ATTACKS

Tee Huu, SAW

Captain, Singapore Armed Forces (Army)
B.ENG (EE), Nanyang Technological University, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2003

Author: Tee Huu, SAW

Approved by: James B. Michael

Thesis Advisor

Mikhail Auguston
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

DDoS attack is evolving at a rapid and alarming rate; an effective solution must

be formulated using an adaptive approach. Most of the simulations are performed at the

attack phase of the DDoS attack; thus the defense techniques developed focus mainly on

filtering and isolating the attack. In order to develop and verify the effectiveness of a

defense strategy, we needed a robust and flexible simulation tool. The Multi-Agent

System Development Kit (MASDK) provided us a means to generate DDoS attack in a

safe experimental environment for testing and validating security solutions, starting from

the implantation phase: this allows researchers to develop new defense strategy even

before the DDoS attack is launched. The paper begins with the study of the

characteristics of DDoS attacks, the types of detection-and-response techniques, and the

available DDoS attack simulation tools. The result generated by the MASDK simulation

tool was used to evaluate the performance of the tool in simulating the DDoS attack over

the networking environment.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. DISTRIBUTED DENIAL-OF-SERVICE ATTACKS ...3
A. WHAT IS DDOS?..3

1. Logic Attacks..3
2. Flooding Attacks ..3

B. PHASES IN DDOS ATTACK ..4
C. RECENT ATTACKS...4

III. PREVENTION, DETECTION AND RESPONSE ...7
A. PREVENTION, DETECTION AND RESPONSE TECHNIQUES7

IV. MASDK SIMULATION TOOL...9
A. RELATED WORK ..9
B. GENERALIZED ARCHITECTURE OF ATTACK SIMULATIOR

PROTOTYPE...10
C. SIMULATION OF DDOS USING MASDK ...15

1. Macro-level Simulation ...15
2. Micro-level Simulation ..16
3. Simulating the DDoS Attack...16

V. TEST SUITE - TEST CASES AND SCENARIOS...19
A. TEST SCENARION 1 ...19

1. Test Case 1: Direct Attack on Server...19
2. Test Case 2: Spoof as Remote Hosts to Attack the Server22
3. Test Case 3: Attack Other Vulnerabilites of the Network22

B. TEST SCENARION 2 ...23
1. Test Case 1: Direct Attack on Server...24
2. Test Case 2: Spoof as Remote Hosts to Attack the Server24
3. Test Case 3: Attack Other Vulnerabilites of the Network25

C. TEST SCENARION 3 ...25
1. Test Case 1: Attack on Server in Network A Using Network B

Resources ..25
2. Test Case 2: Attack Other Vulnerabilites of the Network26

VI. RESULTS AND ANALYSIS ..27
A. INSTALLATION AND OPERATION OF THE SIMULATION

TOOL ...27
B. TEST SCENARIO 1 ..28

1. Test case 1: Direct Attack on Server...28

VII. RECOMMENDATIONS...29
A. TYPES OF DDOS ATTACKS ...29
B. SIMULATING THE ACTUAL NETWORK TRAFFIC29

 viii

C. VARIOUS NETWORK ARCHITECTURES ..30
D. SIMULATING THE PROTECTION MECHANISM30
E. SIMULATING THE TWO PHASES OF DDOS ATTACK30
F. DOCUMENTATION OF THE MASDK SIMULATOR30

VIII. CONCLUSION ..31

APPENDIX A...33

APPENDIX B ...39

LIST OF REFERENCES..51

INITIAL DISTRIBUTION LIST ...55

 ix

LIST OF FIGURES

Figure 1. Distributed Denial of Service Attacks - A simplified Topology.4
Figure 2. General Architecture of Attack Simulator. ..11
Figure 3. Component model of the Hacker Agent. ...12
Figure 4. Component model of the Network Agent..13
Figure 5. Database of network properties used in simulation. ..16
Figure 6. User interface menu for specifying the attack scenario.17
Figure 7. Network Architecture of Test Scenario 1. ...19
Figure 8. Network Architecture of Test Scenario 2. ...23
Figure 9. Network Architecture of Test Scenario 3. ...25
Figure 10. Window for Specifying the Attack. ...34
Figure 11. Attack Scenario Realization...35

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. List of attack activities (From: Kotenko 2003b) ...18

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

The author would like to thank Naval Postgraduate School for the support in

purchasing the software for the research and the following people:

1. Professor Michael, for his patience, advice and guidance to ensure that the

research was thorough, relevant and focused.

2. Professor Auguston, for providing his expertise advice to reinforce the

research study.

3. Professor Kotenko and his research team, for their assistant in modifying

the program to fulfill the research requirements.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Distributed denial-of-service (DDoS) attacks have become commonplace. A

DDoS attack is a simultaneous assault on one or more nodes of a computer network, with

the aim of reducing the availability of computing resources to legitimate users of those

nodes. For instance, an attacker may use a DDoS attack to exhaust bandwidth, router

processing capacity, or network stack resources in order to reduce or eliminate network

connectivity on a targeted portion of the Internet.

DDoS attack programs vary in terms of technical sophistication, but their effects,

irrespective of sophistication, can have an adverse effect on the security of a nation state

or organization, such as first-order effect on electronic commerce and having higher-

order effects on the economic stability of a nation or commercial enterprise. In other

words, a simple DDoS attack program used by a script kiddy (i.e., someone with little

technical expertise who primarily relies on downloading and running attack programs

written by others) can have as great or greater an impact as a sophisticated attack created

by information warriors (i.e., military and intelligence personnel conducting information

operations).

In order to counter such attacks, one needs to be able to dissect existing attacks to

understand how they work so that systems can be designed to be more robust to attack,

one can predict how the vulnerabilities of new or composite systems might be exploited

by DDoS attackers, and one can assess the potential effects of different types of DDoS

attacks. It is not possible to make any system perfectly secure (except for trivial

systems). Thus, one needs to be prepared to respond and mitigate likely DDOS-type

attacks. One way to accomplish the aforementioned tasks is to model and simulate real-

world, potential, and yet-to-be unleashed DDoS attacks, with the latter to be used by

information warriors when assessing the effectiveness and efficiency of such attacks from

an offensive perspective.

In this thesis we investigate the efficacy of using the Multi-Agent System

Development Kit (MASDK) [Gorodetsky 2003] to model and simulate DDoS attacks on

2

computer networks. Our objective is to assess the extent to which one can utilize the

MASDK tool to access the effectiveness of protection mechanisms against DDoS attacks.

The scope of the thesis is as follows:

1. Identification of the weakness in a computer network’s protection
mechanisms, using the MASDK to simulated variants of DDoS attack
scenarios

2. Sensitivity analysis on the protection software

The simulation-based exploration has the following purposes:

1. Checking a computer network security policy at stages of conceptual
design and logic design of network security mechanisms. This type of
checking is performed by simulation of attacks at a macro-level.

2. Checking security policy of a real-life computer network. This task is
performed via simulation of attacks at a micro-level, which is by
generating network traffic corresponding to the real activity of the
attackers in the set up of the actual network architecture.

Our investigation begins with a study of the characteristics of DDoS attacks and

the types of detection-and-response techniques. It continues with the development of

attack scenarios and test cases for use in simulation-based experimentation. The

computation models of the scenarios and test cases are submitted to the MASDK

simulation engine. The simulation output from the macro-level simulation can provide

an overview of the effectiveness of the protection mechanism. Following that, a micro-

level simulation can be carried out to define the more subtle issues in the defense against

the DDoS attacks.

Through our research, we observed that DDoS attack varies from the simple

attack in the form of using e-mail messages to flood a mail server to a more sophisticated

well-planned attack through infiltration of the network protection system and implant of

zombies. The latter is a time bomb in the system control by the attacker. It is very

difficult to defend against the DDoS attack in its first phase (implantation phase) because

of the wide resources that it can use; the zombies are not necessary in the target network.

As such, most of the defense concepts focus on the second phase (attack phase) of the

DDoS attack. The simulation tools available to test such defense concept are limited; they

mostly require expert labor-intensive manual procedures even in the conceptual design

phase. The details of the findings will be further elaborated in the report.

3

II. DISTRIBUTED DENIAL-OF-SERVICE ATTACKS

From 1997 to 2000, DDoS attacks have evolved from a simple one-tier attacks

(e.g., Ping flood, SYN flood, UDP flood) to the two-tiers attacks (e.g., Smurf attack)

[Navratilova 2000]. After 2000, attacker found even more ways to accomplish such

attack by communicating through networks to slave more attack computers. In this

chapter, we will describe the phases and structure of the DDoS attack as well as highlight

some of the recent attacks and their impact to the network users.

A. WHAT IS DDOS?
A DDoS attack is a distributed form of denial-of-service attacks. DoS attacks

consume the resources of a remote host or network by sending large numbers of IP

packets over a short time period. While a single host can cause significant damage by

sending packets at its maximum rate, attackers can mount more powerful attacks by

leveraging the resources of multiple hosts. In a typical DDoS attack, an attacker first

intrudes into as many hosts as possible and installs two kinds of ‘zombie’ program:

control program (master zombie) and flooding program (slave zombie). When the

attacker triggers the master zombies, they order the slave zombies to launch malicious

traffic towards a target server, thus depriving it of its resources so that it becomes

unavailable to legitimate users. There are two principal types of DDoS attack: logic

attacks and flooding attacks [Kashiwa 2002].

1. Logic Attacks
Logic attacks aim to crash the server or starve the server’s system resources, such

as its CPU utilization, file storage or memory, by exploiting flaws in the server software.

Common examples of this type of attack include SYN flood, IP Fragmentation Overlap

and Buffer Overflow [Scambray 2001].

2. Flooding Attacks
In flooding attacks, the attackers do not care what software the victim is using.

Instead, they simply try to consume all available network bandwidth of the target network

by bombarding it with massive amounts of traffic. Some of the well-known examples

include TCP flood, UDP flood, Smurf, Fraggle and ICMP flood [Scambray 2001]. Most

4

DDoS attack tools, such as TFN, TFN2K and Stacheldraht, intensify these flooding

attacks by launching them from multiple sources [Dittrich 2003].

B. PHASES IN DDOS ATTACK
According to [Cabrera 2001], the DDoS attacks have two phases, and involve

three classes of systems. A simplified topology is given in Figure 1. The master system

coordinates the whole effort.

Figure 1. Distributed Denial-of-Service Attacks - A Simplified Topology.

In the first phase of attack, the master infiltrates multiple computer systems, and

installs the DDoS attack tools, which are scripts capable of generating large volumes of

traffic under command from the master. The infiltrated systems are known as the slaves.

The second phase of attack cannot take place until phase one is completed, that is, the

local copy of the attack program has a pipeline-type pipe-and-filter architecture.

The second phase is the actual DDoS attack. Under command from the master,

the slaves generate network traffic to bring down the target system. Any system

connected to the network can be a target.

C. RECENT ATTACKS

In a recent DDoS attack, the Slammer Worm (sometimes called Sapphire) was

said to be the fastest computer worm in history. Slammer began to infect hosts on 25

Master

Slaves

S1

S2

S3

Sn

Target

5

January 2003, by exploiting buffer-overflow vulnerability in computers on the Internet

running Microsoft's SQL Server or Microsoft SQL Server Desktop Engine (MSDE)

2000. Exploiting this vulnerability, the worm infected at least 75000 hosts, perhaps

considerably more, and caused network outages and unforeseen consequences such as

canceled airline flights, interference with elections, and ATM failures [Paxson 2003].

Slammer's most novel feature is its propagation speed. In approximately three minutes,

the worm achieved its full scanning rate (more than 55 million scans per second), after

which the growth rate will slow down because significant portions of the network will

suffer insufficient bandwidth to accommodate more growth.

In August 19, 2003 the U.S. Department of Homeland Security (DHS) released an

advisory warning user that a variant of Blaster worm, dubbed "nachi," "welchia" or

"msblast.D," could cause denial-of-service conditions within organizations. The variant

takes advantage of the same security weakness exploited by the Blaster worm and infects

only systems that have not been properly patched. After infecting vulnerable Windows

2000 or Windows XP machines, the new worm then searches for and removes the Blaster

worm file and attempts to download and install a patch from the Windowsupdate.com

web site to close the hole. If the patch installation is successful, the worm then

automatically reboots the systems and promptly begins looking for other machines on the

network on which to copy itself. The scanning process can flood networks with high

volumes of Internet Control Message Protocol (ICMP) traffic, causing network

congestion which can result in denial-of-service conditions [Vijayan 2003].

DDoS attacks can be launched in many forms. [Jakobsson 2003] shows a “poor-

man” DDoS attack using an email-based attack on selected victims, using only standard

scripts and agents. For example, in August 2003, the Sobig.F attack program crashed

email servers around the globe, as well as a few complete enterprise networks. The worm

infects the computer and scans the files on the hard disk for e-mail addresses. It then uses

those names as the “From” in new e-mails sent with copies of itself as attachments

[Cherry 2003].

In each case, those breakdowns affected emergency services, military readiness,

retail establishment, and government services. The new generation of DDoS attacks can

6

be sophisticated and stealthy, making it difficult to detect them; this new generation of

DDoS attacks in some instances even has the capability of covering their tracks.

7

III. PREVENTION, DETECTION AND RESPONSE

There is no simple answer to the prevention and detection of DDoS attacks. We

can either defend against the attack in the first phase before the attack deployment is

completed or isolating the attacking during the second phase. This chapter will give an

overview of some of the prevention, detection, and response techniques.

A. PREVENTION, DETECTION AND RESPONSE
[Cabrera 2001] proposes a methodology for utilizing a Network Management

System (NMS) for detection of DDoS attacks. The NMS depends on the information

from MIB (Management Information Base) traffic variables collected from the system

participating in the attack. Using these datasets, the MIB-based technique renders it

possible to detect the attack before the Target is shut down. [Mirković 2002] presents a

similar defense concept known as D-WARD, a DDoS defense system deployed at source-

end networks that autonomously detects and stops attacks originating from these

networks. The detection algorithm relies on constant monitoring and periodic comparison

of current system workload with predicted workloads obtained from models of normal

flow. Any mismatching flows will be rate-limited. These two methodologies may not be

able to detect any new forms of attacks that are not captured in the datasets or models.

Research conducted by some organizations suggests that statistical measurements

and statistical processing are effective mechanisms for addressing some of the challenges

of defending against DDoS attacks. [Feinstein 2003] presented a DDoS defense strategy

by analyzing the live traffic traces from a variety of network environments. The detection

algorithms (Entropy and Chi-Square Statistic) deduce an attack by measuring the

statistical properties of anomalies behavior in the packets at various points in the internet.

The analysis result will be used to target packet-filtering or limiting responses to mitigate

the effects of DDoS attacks. [Sung 2002] also proposes a technique to filter out DDoS

traffic to improve the overall throughput of the legitimate traffic. It has the Enhanced

Probabilistic Marking (EPM) module and Attack Mitigation Decision-making (AMD)

module scheme to improve the throughput of legitimate traffic during attack, by

preferentially filtering out traffic that is more likely to come from an attacker than a

legitimate host. The main weakness in these strategies is that the responses to the attack

8

take place in the second phase of the attack. That means part of the system operation will

be degraded and the cleaning up of infected hosts in the network will be tedious and time

consuming. On top of that the determination of DDoS traffic and legitimate traffic is

based on probabilities.

[Kashiwa 2002] proposes a countermeasure against DDoS attacks using a traffic

control method known as Active Shaping. This approach uses the Active Networking

Technology incorporates programmability into intermediate network routers that can

deploy application-level functions to detect, traceback and defend at suitable network

nodes. Once again the detection of DDoS attack is during the second phase of the attack.

Most of the detection techniques focus on the event of the second phase of the

DDoS attack and each has their unique defense features against different form of DDoS

attacks. To effectively defense against DDoS, we need to detect DDoS attack in its

deployment phase, which is in the first phase. If the attacks are carried out by highly

trained attackers, who unlike script-kiddies, continuously customize their existing arsenal

of attack programs and create new ones in order to both avoid detection and achieve the

maximum desired effect, we will need detection technique that can detect and construct

new attack scenarios. [Ning 2002] and [Cuppens 2002] suggested technique in correlating

intrusion alerts to construct a possible attack scenarios of a bigger attack.

Most of the responses of the detection techniques can be grouped under three

main types stated in [Zhao 2001]; (1) Validation of routing devices (filtering), (2)

Dropping packet with specific characters (mitigating), (3) shutting down the host that

undergoing attack (isolation). Although D-WARD and Active shaping approaches are

able to traceback and investigate the source of attack, but the response are meekly

defending the attack at the nodes. This leaves the attacker to look for vulnerability at

other area and launch another attack. There is a need for responses that will deter or stop

the attackers from launching further attack. [Michael 2003] presented a software decoy

concept that integrates intrusion detection and response to protect critical information

systems.

9

The study of detection and response techniques is not the purpose of the thesis,

rather we are looking at a suitable tool to demonstrate and evaluate the strengths and

weaknesses of such existing techniques.

10

IV. MASDK SIMULATION TOOL

Three techniques for performance evaluation stated in [Jain 1991] are analytical

modeling, simulation and measurement. If it is a new concept, analytical modeling and

simulation are the only techniques from which to choose. Simulations can incorporate

more details and require less assumption than analytical modeling and, thus, more often

the result is closer to reality. This chapter provides an overview of existing DDoS

simulation tools, the architecture of the MASDK simulation tool and its simulation

technique.

A. RELATED WORK
The most common simulation technique for DDoS attack is to use a DDoS attacks

tool to carry out a DDoS attack in the simulation network. Some of the tools we were

able to locate include Stacheldraht [Dittrich 1999a], Tribe Flood Network (TFN or

TFN2K), and trinoo [Dittrich 1999b].

[Sterne 2002] used the Stacheldraht v4 attack tool to generate UDP and ICMP

flood, TCP SYN floods, and Smurf attacks as part of simulation. The technique in

evaluating the defense is still based on expert labor-intensive manual procedures by

networks administrators. A network needs to be setup to collect data while the attack is

carried out.

The simulation methodology in [Sung 2002] uses CAIDA (Cooperative

Association for Internet Data Analysis) and Cheswick’s Topology dataset. CAIDA and

Cheswick’s Topology dataset are network probing tools for measuring forward IP paths,

measuring round-trip time, tracking persistent routing changes, and visualizing network

connectivity. Similar to the methodology used by [Sterne 2002], it requires the user to set

up a target network in order to perform the simulation.

The primary weakness in these approaches is labor intensive manual procedures

that involve. MASDK provides another type of simulation platform that allows the design

to be tested on a single PC before an actual network is required. The following section

will provide some details on the MASDK tool.

11

B. GENERALIZED ARCHITECTURE OF ATTACK SIMULATOR
PROTOTYPE
The software prototype for computer network attack simulation is built as a multi-

agent system that uses two classes of agents. The agent of the first class simulates defense

system of the attacked computer network (“Network Agent”) and the second one

simulates a hacker performing attack against computer network (“Hacker Agent”). In the

developed prototype each agent class has single instance although the developed

technology makes it possible to simulate a team of hackers and a team of agents

responsible for computer network security.

The aforementioned agents are implemented on the basis of the technology

supported by Multi-Agent System Development Kit (MASDK) that is a multi-agent

software tool aiming at support of the design and implementation of multi-agent systems

of a broad range [Kotenko 2003a]. The developed and implemented simulator comprises

the multitude of reusable components generated by use of the MASDK standard

functionalities and application-oriented software components developed manually in

terms of programming language MS Visual C++ 6.0 SP 5. Figure 2 illustrates the general

prototype architecture.

Each agent operates using the respective fragment of the application ontology that

is designed by use of an editor of MASDK facilities. The interaction between agents in

the process of attack simulation is supported by the communication environment, which

design and implementation is also supported by MASDK.

It is worthy to note that the first version of the prototype was implemented as a

system that consisted of a single agent simulating a hacker's activity whereas computer

network security system was simulated as a reactive system. In such architecture, it is not

necessary to situate both attacking Hacker Agent and computer network security reactive

system in a communication environment. In the first version of the prototype, the

communication component plays a very important role. Indeed, the knowledge bases of

Network Agent and Hacker Agent are implemented as two separate entities. An

advantage of such a knowledge representation makes it possible to simulate adversary

interactions. Such a model adequately implements interaction of both the above entities.

In it, while simulating an attack in order to either obtain response providing it with the

12

needed information (on the reconnaissance stage) or to perform an attack action (on the

threat realization stage - Hacker Agent sends a certain message to the Network Agent).

The Network Agent, as in real-life interactions, analyzes the received message and forms

a responsive message. This message is formed based on the Network Agent's knowledge

base that represents the network configuration and all its attributes needed to simulate

real-life response. The Network Agent's knowledge base also uses information about

possible existing attacks and provides reaction on them.

Figure 2. General Architecture of Attack Simulator.

The key components of both agents correspond to so-called kernels that are the

modules written in C++ and compiled into a dll file. These components provide interface

between the part of the software written in C++ and the components implemented

through the use of MASDK. The kernels provide interfaces to the respective fragments of

the application ontology, and initialize the state machines, which in turn execute their

scripts.

Let us consider the main components of the Hacker Agent. The component model

of the Hacker Agent is shown in Figure 3. It comprises the following main components:

1. The core (Agent Hacker Kernel)
2. Fragment of the application domain ontology
3. State machines model

13

4. Scripts
5. Attack task specification component
6. Probabilistic (stochastic) decision-making model with regard to the further

actions
7. Network traffic generator
8. Visualization component of the attack scenario development

Figure 3. Component Model of the Hacker Agent.

The kernel of the Hacker Agent (Hacker.dll) contains a standard set of functions

require for exploiting the ontology and running state machines. It is also provided with

functions that call specification of attack task, compute next state-machine transition as

well as initiate and perform visualization of the attack development.

Fragment of the application domain ontology specifies a set of notions and

attributes used by the Hacker Agent.

The state machines model component is used for specification of the Hacker

Agent behavior including decision-making mechanism used by the Hacker Agent for

choosing the next action to perform. It is built on the basis of attribute stochastic

grammars, and consists of over fifty nested state machines.

14

The script component specifies the set of scripts that can be performed by the

Hacker Agent's state machines.

The attack task specification component provides user with interfaces require for

specifying attack attributes.

A probabilistic decision-making model is used to determine the Hacker Agent's

further actions in attack generation.

Network traffic generator is used to form the flow of network packets for several

classes of attack directed to the hosts according to the attack specification. This

component is initiated through calling the particular kernel function of the scripts of those

states, for which the network traffic has to be generated.

Visualization component of the attack scenario development is used for visual

representation of the attack progress, corresponding to each action of the attacker and

respective responses from the Network Agent. The responses may be effective (i.e., the

attack action was successful in part or in full), or ineffective (i.e., no response message,

or the message saying that the attack was blocked by the firewall).

Figure 4. Component Model of the Network Agent.

15

Let us consider the main components of the Network Agent. It is depicted in

Figure 4. They are as follows:

1. The core (Network Agent Kernel)
2. Fragment of the application domain ontology
3. State machines model component
4. Scripts component
5. Network configuration specification component
6. Firewall model (implementation) component
7. Generator of the network’s response to attack action

Network Agent Kernel (NetAgent.dll) contains the standard set of functions for

processing the application domain ontology and the state machine model, as well as the

functions used to specify the network configuration through the user interface, the

firewall model initialization, and the computation of the network’s response to an

attacking action.

Fragment of the application domain ontology determines a set of notions and

attributes used by the Network Agent.

State machines model of the Network Agent's specifies its behavior. This state

machines model mostly performs communication functionality. It specifies the actions

corresponding to the receiving of incoming message, classification, processing, and

sending the response.

The scripts component specifies a set of scripts initialized from the state machines

model of the Network Agent.

The network configuration specification component is used for the specification

of a set of user interfaces for the description and configuration of the network to be

attacked. All the notions and attributes that pertain to the networks and hosts, including

the notions and attributes that describe firewalls, are described through these interfaces.

Firewall model (implementation) component is used to determine the firewall’s

response to the action generated by the Hacker Agent. Each incoming message from the

Hacker Agent that constitutes an attack action is entered into the firewall model, which is

assigned to the entire network (in imitation of a network firewall) or (and) the host (in

imitation of a personal firewall). In the event of an attack is blocked by the firewall, the

16

response message formed by the Network Agent contains the information about the

attack that has been blocked by a specific firewall.

The generator of the network’s response to the attack actions is used for the

generation of the responses (messages) according to the type attack action. It is initialized

through the corresponding function exported by the agent’s kernel after the Hacker Agent

has successfully overcome a firewall.

C. SIMULATION OF DDOS USING MASDK
In Chapter III, we have discussed various techniques and tools that developed to

detect and defeat DDoS attacks. However, the DDoS attackers constantly modify their

DDoS programs to exploit newly discovered vulnerabilities in the protection

mechanisms, user applications, middleware, and operating systems. In order to combat

DDoS, one needs to develop a strong theoretical basis upon which to harden information

systems and infrastructures so they can survive such attacks.

In the beginning of this chapter, we mentioned two types of methods for

simulation and testing the system that under DDoS attack. Most of these simulation

methods required labor intensive manual setup even at conceptual design phase. To test a

protection mechanism for various network infrastructure is too resource consuming.

MASDK supports two levels of simulation, namely the macro-level and micro-

level.

1. Macro-level Simulation
In macro-level simulation, the simulation can be run in a standalone PC. The

conceptual design of the protected network and the attacker capabilities can be input into

the database of the "Network Agent" and "Hacker Agent" using the Microsoft Access.

Figure 5 shows an example of the database file capturing the details of the protected

network.

The user is required to enter the values of the tables in order for the simulation to

produce a realistic result. For example, the user needs to specify whether the firewall is

network-firewalls or host-firewalls and the probability of blocking undesired traffic and

so on. The properties of the protective mechanism deployed in the network can be

specified in this database. On the hand, the user can also specify the capabilities of the

17

attacker, examples which are the networks that the attacker has gained trusted

relationship.

 Figure 5. Database of network properties used in simulation

2. Micro-level Simulation
Micro-level simulation allows the user to setup part of the network for more

details simulation and testing. The actual protective mechanisms (e.g. firewalls, tripwire,

IDS, etc) can be deployed in the physical network and the MASDK simulation tool can

be used to carried out the DDoS attack activities. Each of the activity can be carried out

individually or combined as a sequence of events. In this mode, it allows more interactive

simulation, the user is able to observer the behavior of the protective mechanism in the

network.

3. Simulating the DDoS Attack

In Chapter II, we mentioned that there are two phases in a DDoS attacks. To

prevent the launch of an attack, we must be able to stop it during the first phase.

Otherwise we are only able to minimize the damage in phase two of the attack. The

MASDK simulation tool breaks down the simulation of phase one of DDoS attack into

twelve attack activities as listed in Table 1 [Kotenko 2003b].

The attack activities can be carried out as independent events or combine as a

sequence of events during the simulation. Other hacking software (e.g., password

cracking programs) can be integrated with MASDK to enhance the realism of the attacker

capability. The attacker real or spoofed IP address can be specified in the simulation to

18

test the protection against such attack. Figure 6 shows one of the user interface menu for

specifying the attack scenario.

 Figure 6. User interface menu for specifying the attack scenario.

19

Class Number Designation Interpretation

1 IH Identification of Hosts
2 IS Identification of Services
3 IO Identification of OS
4 RE Shared resources enumeration
5 UE Users and groups enumeration

R
ec

on
na

is
sa

nc
e

6 ABE Applications and banners enumeration
7 GAR Get access to resources of the host
8 EP Escalating Privilege with regard to the host

resources
9 CVR Confidentiality violation realization
10 IVR Integrity violation realization
11 AVR Availability violation realization

Im
pl

an
ta

tio
n

an
d

Th
re

at
 R

ea
liz

at
io

n

12 CBD Creating back doors

Table 1 List of attack activities (From: Kotenko 2003b)

During the simulation, the attack activities will be carried based on the attack

scenario created. MASDK will feedback to the user whether the attack activities are

successfully carried out or otherwise. Appendix A provides more details on the attack

description.

20

V. TEST SUITE - TEST CASES AND SCENARIOS

The best way to learn the response and behavior is to apply the concepts to a real

system. This is specially true of computer systems performance evaluation because even

though the techniques appear simple on the surface, their application to the real systems

offer a different experience since the real systems do not behave in a simple manner. The

test scenarios in this chapter are developed to study and analysis the dynamic behavior of

the network protection mechanism defense against the DDoS attack. The results obtained

will be used in the analysis in the Chapter VI.

A. TEST SCENARIO 1
The server in the network is providing services to both its local hosts as well as

the remote hosts (e.g. customer, employee) through the internet. The attacker prepared

and launched a DDoS attack on the Server from providing the service.

Figure 7. Network Architecture of Test Scenario 1.

1. Test Case 1: Direct Attack on Server
Attacker infiltrates the network, gain access to the local hosts (need not be all)

and launched a direct attack on the server. The attacker will carry out the following five

general attack activities.

Reconnaissance: Use open sources to gain available information about the

network. Useful information includes phone numbers, postal addresses, internet

addresses, names of system administrators, technologies in use, business partnerships,

Router
Internet

Server

Host Host Host

Host Host
Remote Host

Remote Host

21

etc. Reconnaissance agent gathers information from a variety of servers on the internet

like,

 1. Ping to check whether any of the host is alive (connected).
 2. Do a DNS look up to map domain names to IP addresses
 3. Do a DNS zone transfer and grab all information available about a

 particular domain.
 4. Look up IP block registration to analyze the IP address range assigned to a

 given organization.
 5. Trace-route to determine the list of routers between the source and

 destination.

Scanning: Using the information gather from the reconnaissance, the attacker will

scan the network systems for vulnerabilities. Employ scanning agent to,

 1. Search for modems that are connected using the range of phone numbers
 gathered.

 2. Develop a network map of the target network to define the network
 topology.

 3. Conduct port scan to determine open ports that indicated the types of
 service (e.g. type of OS) which are running.

 4. Scan for vulnerabilities like misconfigurations, unpatched systems with
 known vulnerabilities, etc.

Gaining Access: There are many ways to gain access to the target network, the

gain_access agent can,

 1. Manipulate poorly written software.
 2. Exploit weak password storage mechanisms.
 3. Gather data that is not properly encrypted such as userIDs and passwords.

Maintaining access: After gaining access to the system, gain_access agent can

maintain the access by utilize Trojan Horse and Backdoor techniques to hide its presence

on the system and guarantee future access. These backdoors can be created in three

levels,

 1. Application-level Backdoors - install malicious application into the system
 2. Traditional RootKits - modify existing programs on the system.
 3. Kernel-level RootKits - modify the kernel of the system itself.

Covering the Tracks: The master and slave zombies must be installed without

being detected by the protective mechanism in the host or the network. The stealth agent

is employed to carry out:

 1. File Hiding to hide the malicious program in the system (host or server).
 2. Protocol Tunneling to hide the data moving across the network by

 carrying one protocol on top of another.

22

 3. Covert Channels to hide data inside the openings of a protocol (e.g. the
 TCP header).

Once the deployment phase of DDoS attack is completed, attacker will launch an

attack remotely through the internet.

Protective Mechanisms available include:

1. Intrusion detection system
2. Firewall
3. File integrity checking software (e.g. Tripwire)
4. Anti-virus software
5. Configuration management

• Implement non-executable system stack to prevent buffer overflow
attack.

• Keep the system with up to date patches.
• Identify users with weak password.
• Shut off unwanted services (e.g. Telnet) that have inherent security

weaknesses.
• Close unused port.
• Audit usage of system.

The simulation and analysis will include the following:

Run 1: Using the MASDK tool to attack the network without any protective

mechanism. At micro-level simulation with the setup of actual network, we will examine

how fast the MASDK tool can infiltrate the network and set the backdoor at the hosts.

Run 2: Using the MASDK tool to attack the network that has protection

mechanism 1 to 4. At micro-level simulation with the setup of actual network, we will

examine the following,

1. Is the IDS in the network able to recognize the attack signature?
2. Is the type of firewall (e.g. stateful or proxy firewall) and firewall

configuration able to block the attack?
3. Is the file integrity checking software able to detect the insertion and

modification of the files in the system?
4. Is the anti-virus software help in defending the system again such attack?

The protective mechanisms need to be set at different configurations to produce

the best result.

Run 3: In addition to the protective mechanisms in Run 2, the network is further

hardened with the configuration management. This will help to examine how effective by

doing a proper network configuration defend against DDoS attack.

23

2. Test Case 2: Spoof as Remote Hosts to Attack the Server
In order to launch an effective DDoS, the attacker must control enough zombies

to execute the attack. If the number of infected hosts is not sufficient, the attacker will

spoof as numerous remote hosts to attack the Server.

The attack will still require to carry out the five general attack activities

(reconnaissance, scanning, gaining access, maintaining access and covering the tracks) to

gain enough information to spoof as legitimate hosts.

The available protective mechanism will be the same in Test Case 1.

The simulation and analysis will include the following:

Run 1: Using the MASDK tool to attack the network without any protective

mechanism. We will examine how fast the MASDK tool can gain information of the

system and spoof the network as a remote legitimate host.

Run 2: Using the MASDK tool to attack the network that has all available

protection mechanisms. At micro-level simulation with the setup of actual network, we

will examine the following,

1. Is the authentication system effective against the attack?
2. Is the IDS in the network able to recognize the attack signature?
3. Is the Firewall configuration able to block the attack?

The protective mechanisms need to be set at different configurations to produce

the best result.

3. Test Case 3: Attack Other Vulnerabilities of the Network
Instead of attacking the server of the network that providing the services, we will

attack the weakness in such network architecture.

The attack will still require to carry out the five general attack activities

(reconnaissance, scanning, gaining access, maintaining access and covering the tracks) to

gain enough information to spoof as legitimate hosts.

The available protective mechanism will be the same in Test Case 1.

The simulation and analysis will include the following:

24

Run 1: Using the MASDK tool to attack the network router. This will deny

services provide by the server to the remote legitimate hosts. We shall examine how to

modify the network architecture to overcome such attack and the resources that require.

B. TEST SCENARIO 2
In Scenario 1, the network does not have layers of protection mechanism. All

systems within the network are protected by the same firewall or IDS. In most

application, the network will like to separate untrusted users on the DMZ networks. DMZ

(De-Militarized Zone) a "neutral zone" between a company's private network and the

outside public network. For example, packet filtering might allow HTTP from the

Internet to reach the DMZ but prohibit telnet, finger, and other protocols that might easily

allow an attack on your trusted networks to be launched.

It is not necessary that this network architecture is more secure than the one in

Scenario 1. However, this architecture is closer to the set up of an actual network.

Figure 8. Network Architecture of Test Scenario 2.

1. Test Case 1: Direct Attack on Server
Attacker infiltrates the network, gain access to the local hosts and launched a

direct attack on the server. The attacker will carry out the five general attack activities on

the target network.

Protective Mechanism Available

1. Intrusion detection system

Router

Internet

Database
Server

Host Host

Host
Remote Host

Remote Host

DMZ

Web Server

Firewall

25

2. Firewall
3. File integrity checking software (e.g. Tripwire)
4. Anti-virus software
5. Configuration management

The simulation and analysis will include the following:

Run 1: Using the MASDK tool to attack the Database Server. At micro-level

simulation with the setup of actual network, we will examine the following,

1. Is the IDS in the network able to recognize the attack signature?
2. Is the type of firewall (e.g. stateful or proxy firewall) and firewall

configuration able to block the attack?
3. Is the file integrity checking software able to detect the insertion and

modification of the files in the system?
4. Is the anti-virus software help in defending the system again such attack?

Run 2: With more security resources, we will examine the following,

1. Given more IDS sensors, how should the IDS sensors deploy to enhance
the detection?

2. If another Firewall is employed between the router and DMZ, does it
improve the defense against the attack? What should be the configuration
of the two firewalls?

2. Test Case 2: Direct Attack on Server
This test case is similar to Test Case 2 in Scenario 1 with different network

architecture.

The simulation and analysis will include the following:

Run 1: Using the MASDK tool to attack the network that has all available

protection mechanisms. We will examine the following,

1. Is the authentication system effective against the attack?
2. Is the IDS in the network able to recognize the attack signature?
3. Is the Firewall configuration able to block the attack?

Run 2: With more security resources, we will examine the following,

1. Given more IDS sensors, how should the IDS sensors deploy to enhance
the detection? The deployment of sensors may be different from Test Case
1 for best result.

2. If another Firewall is employed between the router and DMZ, does it
improve the defense against the attack? What should be the configuration
of the two firewalls?

26

3. Test Case 3: Attack Other Vulnerabilities of the Network
This test case is similar to Test Case 3 in Scenario 1 with different network

architecture.

The simulation and analysis will include the following:

Run 1: Using the MASDK tool to attack the network router. This will deny

services provide by the server to the remote legitimate hosts. We shall examine how to

modify the network architecture to overcome such attack and the resources that require.

C. TEST SCENARIO 3
Network A and Network B is business partner, therefore they have a trusted

relationship. The server in Network A is the target of the attack. Network A has a much

stronger security setup than Network B. Attacker explore the weakness in Network B and

use it as the platform to launch the DDoS attack.

Figure 9. Network Architecture of Test Scenario 3.

1. Test Case 1: Attack on Server in Network A Using Network B
Resources

Attacker infiltrates Network B, gain access to the local hosts (need not be all) and

launched a DDoS attack on the server of Network A. The attacker will carry out the five

general attack activities.

Router

Internet

Server

H

Host Host
Remote Host

Router

Server

HostHost

Network A

Network B

27

Protective Mechanism Available

1. Intrusion detection system
2. Firewall
3. File integrity checking software (e.g. Tripwire)
4. Anti-virus software
5. Configuration management

The simulation and analysis will include the following:

Run 1: Using the MASDK tool to take over the systems in Network B as zombies.

Once the zombies are successfully install in Network B, the attack will make use of the

trusted relationship to launch the DDoS attack on the server of Network A. We shall

examine the whether the protection mechanism in Network A is able to detect the

increase in network traffic between Network A and Network B.

Run 2: Employ a few more similar networks like Network B. Instead of using

only the zombies in Network B, the attacker distributes the attack zombies over a few

networks. We shall examine whether this form of attack are more stealthy as compare to

Run 1.

2. Test Case 2: Attack Other Vulnerabilities of the Network
Instead of attacking the server of the network that providing the services, we will

attack the weakness in such network architecture.

The simulation and analysis will include the following:

Run 1: Using the MASDK tool to attack the network router using Network B

resources. This will deny services provide by the server to the remote legitimate hosts.

We shall examine how to modify the network architecture to overcome such attack and

the resources that require.

28

VI. RESULTS AND ANALYSIS

 [Kotenko 2003a] states that the experiments conducted with the MASDK can be

performed at the macro- or micro-level. Macro-level simulation for checking a computer

network security policy at stages of conceptual and logic design of a network security

system and micro-level for checking the security policy of the real-life computer

network. However the present version of MASDK is only capable of simulating an attack

at the macro-level with the limitation stated in Chapter VII. The results of the simulation

are shown in Appendix B. In this chapter we present our analysis of the results obtained

from the simulation.

A. INSTALLATION AND OPERATION OF THE SIMULATION TOOL
The instruction on installation and operation of the attack simulator is in

Appendix A. There are four points that the user should be aware before using the

software.

First, in addition to the installation and operation instruction that attaches with the

software, the system requires Microsoft MS Studio Library to operate. The Microsoft MS

Studio Library can be easily set up by installing any of the software in Microsoft MS

Studio (e.g. Visual C++, Visual Basic). If the library is not installed, the user will

experience error message on missing dll file during the execution of the program.

Second, in the present version of the simulation tool, the user may realize that the

simulation ‘hangs’ after a few attack activities. The user should check the option ‘save

preceding attack realization’ on the screen shown on Figure 6 for all simulations. This

will allow the user to exit from the simulation if it hangs and continue the sequence of

attack by re-entering the simulator with the same input parameters.

Third, the simulation will take as short as thirty-five minutes to achieve the attack

objective for a network without any protection mechanism. A system with protection

mechanisms can run as long as eight hours or more for multiple iterations before ‘the end

of attack’ message is received when the attack activities in Table 1 are not successful.

However the interval between each activity should not be more than three minutes, else

the system is likely in the ‘hang’ state.

29

Lastly, the simulation result obtained in the ‘Attack Scenario Realization’ screen

(see Figure 11) is not able to export to another file or save; therefore the user should copy

the result screen to another file manually before exiting the program.

B. TEST SCENARIO 1
In this scenario, the network architecture is simplified to test and observe the

behavior and characteristics of the MASDK simulation tool. The support for modeling

the protection mechanisms is limited to a firewall at the network level for the present

version of the MASDK simulation tool.

1. Test Case 1: Direct Attack on Server
Due to the limitations in the current version of the MASDK simulation tool, we

were only able to perform Run 1 and Run 2.

In Run 1 with no protection mechanism, the Hacker Agent is able to carry out all

the attack activities smoothly. The simulation took thirty-five minutes from

reconnaissance to complete installation of backdoors and covering up its tracks. The

result obtained is not surprising: in real-life, if the network has no protection at all, an

attacker will require little or no effort to take over the control of the computer systems

present in the network.

In Run 2 with a network Firewall (set Probability at 0.9), there are total three runs

with average of five hours per run. In the first two runs, the Hacker Agent is not

successful in the attack: all attack activities are blocked by the firewall. In the third run

the Hacker Agent has tried numerous attempts to gather information of the target

network, and from screen 3 onwards the Hacker Agent is able to identify the services that

are available on the network systems. The reconnaissance result gives the Hacker Agent

the opportunity to install three backdoors on the network systems. This is true to real-life

applications, in which the configuration of the firewall will change during different

phases of an operation. For example, the firewall can be temporarily configured to allow

Telnet for remote configuration or FTP for transferring of data. The attacker will

periodically check the target network for such opportunities to deliver its attack payload.

30

VII. RECOMMENDATIONS

The present version of MASDK simulator places artificial limitations on

simulating the real-world DDoS attacks. Here we will highlight our recommendations for

improving the toolkit.

A. TYPES OF DDOS ATTACKS
There are two general types of DDoS attacks as (c.f., Chapter II): logic and

flooding attacks. In the simulator, the DDoS attack is limited to phase one of the flooding

attack. The user is not able to specify the type of attack. Furthermore, there are many

forms of flooding attacks, each of which may require different defense strategies. In

recent years, DDoS attacks have become even more sophisticated; for instance, the

Sobig.F and MS Blast have developed unique defenses. For example, one of these

defenses causes infected computers to reboot themselves every ten minutes which is

faster than any software can be downloaded to install a fix [Cherry 2003].

Typically the DDoS attack depends on two properties: (i) the size of attack

packets and (ii) the multiplying speed. The larger the attack packet, the higher the impact

will be on the traffic congestion on the network. However, a small attack packet is more

likely to get through the packet filtering but require a much higher multiplying speed to

achieve the same impact.

 The weaknesses and strengths of a protection mechanism can only be truly

validated if various properties, types, and forms of attack can be built into the simulator.

B. SIMULATING THE ACTUAL NETWORK TRAFFIC
The element in the simulator that requires modification is the network traffic. The

traffic flows in any network are analogous to human keystrokes: each has its unique

pattern of behavior. The user must be able to program and control the network behavior

and traffic density of the network for specific network architectures in order to observe

the impact caused by the attack. Network behavior includes the type of messages (i.e.,

broadcast, unicast, or multi-cast) and varies with traffic density over time. Traffic density

is the measure of the load versus the bandwidth. The simulator must be robust enough to

31

simulate the network traffic density and network behavior in order to obtain an accurate

simulation result.

C. VARIOUS NETWORK ARCHITECTURES
Although the present version of MASDK simulator can simulate the DDoS attack

at macro-level in a standalone PC, it still requires the programmer assistant to change the

network architecture. There should be a tool (e.g., GUI) for the user to build the network

for simulation. This will give the user more flexibility during the design phase and a

better view of both the strengths and weaknesses of different network architecture in the

simulation-and-analysis phase.

D. SIMULATING THE PROTECTION MECHANISM
There are various commercial-available network protection elements such as

firewalls, intrusion-detection systems, and tripwires. These elements can have various

configurations or types for different protection requirements. A firewall can be stateful or

proxy firewall, or it can be configured to block certain network protocols (e.g., ICMP or

Telnet). An IDS can have host- or network-based sensors. The present version of the

MASDK simulation tool is only capable of simulating a firewall. The library for

protection mechanism needs to be expanded in order to permit macro-level simulation of

real-world protection mechanisms and security policies.

E. SIMULATING THE TWO PHASES OF DDOS ATTACK
In Chapter II, we mentioned that DDoS attacks are comprised of two phases: (i)

the implantation phase and (ii) launching of the attack phase. The version of MASDK

used in the study is limited to simulation for the implantation phase. Although this gives

the advantage in studying the behavior of the attacker and the attack strategy, it is not

able to demonstrate the impact and degree of damage in such attack.

F. DOCUMENTATION OF MASDK SIMULATOR

The MASDK simulator still in the research phase, as such there is no user manual

or guide in using the tool. A good documentation will help both the designer and user on

the progress of the simulator development.

32

VIII. CONCLUSION

DDoS attack is evolving at a rapid and alarming rate; an effective solution must

be formulated using an adaptive approach. Most of the simulations are performed at the

attack phase of the DDoS attack; thus the defense techniques developed focus mainly on

filtering and isolating the attack. We observed that the attackers, besides constantly

advancing their attacking skill, also develop an array of defense strategies against the

countermeasures. The anti-virus software, firewalls or IDS will need to be empowered

with a similar capability in order to be effective against the DDoS attacks: the defense

strategy must be able to adapt to changes. Defending against the attack in its implantation

phase will likely prove to be more effective in the future.

In order to develop and verify the effectiveness of a defense strategy, we needed a

robust and flexible simulation tool. MASDK simulation tool provided us a means to

generate DDoS attack in a safe experimental environment for testing and validating

security solutions, starting from the implantation phase: this allows researchers to

develop new defense strategy even before the DDoS attack is launched. However, the

study shows that MASDK development is still in its infancy. The result obtained from the

simulation is static and does not show the robustness and complexity of the DDoS attack.

To have a more realistic, interactive and dynamic simulation, modification is required on

the hacker agent and network agent to model various types and forms of DDoS attack in

addition to the network traffic and network architecture.

Nevertheless, the MASDK simulation tool has laid a foundation and gives a head

start in modeling the DDoS attack right at the beginning of the attack. The two levels of

simulation (macro-level and micro-level) also minimize the amount of resources required

to verify the concept of any defense strategy or mechanism. The MASDK simulation tool

can be further developed to include more agents as mentioned in [Gorodetsky 2003] to

provide a more robust, interactive and realistic simulation environment.

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

APPENDIX A

This appendix contains the instruction on installation and operation with Attack

Simulator (in the environment MASDK 2.1).

System requirements:

1. OS Windows 2000 (with SP3) or XP (with SP1)
2. free disk space - 50 Mb
3. minimum of operation memory - 128 Mb
4. Presence of the established TCP/IP package (As a rule, it is automatically

installed together with OS)
5. Presence of established driver Access ODBC (As a rule, it is automatically

installed together with OS and MS Office)

Necessary additional software (on the disk):

1. Java Run Time Environment, version - 1.4.1_01 or higher (File j2re-
1_4_2-win.exe of the distribution kit is on the disk).

2. MS XML, version - 4.0 or higher (File SP1.msi of the distribution kit is on
the disk).

Sequence of actions on installation:

1. Copy catalogue MAS4 with all subdirectories to disk C.
2. Start the file C:\MAS4\Generic_agent\Server\server.bat
3. Start the file C:\MAS4\Generic_agent\Server\portal.bat 1
4. Select the item of the menu “File Start Agents” in window “AIL

Registry” or press the button . After this two agents “MainHack” and
“MainNet” will be installed 2

5. Press the button in the appeared affiliated window “Agent MainHack”
of the window “AILab Agent Library :: Portal Component”. As a result an
user interface of hacker agent will be installed

1 It is doesn’t matter in which order to start the files “server.bat” and “portal.bat”. As a result four

windows will appear, including windows “AIL Registry” and “AILab Agent Library :: Portal Component”
2 As a result under successful installation of agents the following information will appear in window

“AILRegistry”:

Added New Agent MainNet

Returning current agent information…

Returning current agent information to new agent…

Added New Agent MainHack

Returning current agent information…

Returning current agent information to new agent…

35

6. Select “Attack Description” in the appeared window “Predefined Actions”
and press the button “Use”. As a result the window “Specify The Attack”
will appear as in Figure 10.

Figure 10. Window for Specifying the Attack.

The settings of the Hacker Agent include the following elements:

 Real IP-address – Hacker Agent’s real IP address. This field is mandatory. It
is necessary for determining the attack scenario on both macro-level and
micro-level (for forming network packets on the level of TCP/IP protocol
stack);

 Spoofed IP-address – Hacker Agent’s spoofed IP address. This field is not
mandatory, unless attacks have to be generated on micro-level;

 Password file – path to the file with a list of words for guessing the password.
This file is used only in generating attacks “Password Guessing” (PG) and
“Password Cracking” (PC) on micro-level;

 Save preceding attack realization – the tag that determines whether the results
of the previous attacks will be saved. When this parameter is initialized, the
attack specified by this component will be executed using the knowledge base
formed in the previous realizations of attacks (not necessarily with the same
intentions). All logs and traces are also saved in this case;

 Generate attacks on net protocol level – the tag that determines whether the
attack will be generated on macro-level. When this parameter is initialized,
besides the simulation of attack on macro-level, network packets are
generated on the level of TCP/IP protocols stack.

36

In the given debugging version an updating of the information, known to the

agent - hacker (button “Define Known Information”) is blocked.

The used initial data allow carrying out attacks for 12 classes of intentions at the

macro-level.

For micro-level simulation of attacks it is necessary to set the real IP-address of

an attacked host or a network. In the given version it is carried out directly through a

hacker’s database (file “MainHack.mdb”).

7. Press the button “OK” in window “Specify The Attack”. As a result a
process of attack simulation will be installed. It will be visualized as
shown in Figure 11.

Figure 11. Attack Scenario Realization.

37

The presented window depicts the fragment of attack development for the

intention 7 (“Getting Access to Resources (GAR)”), where the hacker’s IP-address is

161.43.201.148 and the host IP-address is 210.122.25.16.

In this window the information about attack is divided on the following four

groups:

 the attack task specification units are mapped in the left top of the screen;
 to the right of them the attack generation tree is visualized;
 the strings of generated malefactor’s actions are placed in the left part of the

screen below the attack task specification;
 on the right of each malefactor’s action a tag of success (failure) and data

obtained from an attacked host (a host response) are depicted.

The Attack task specification section contains the information generated by the

component of the attack task specification.

The graph showing the Attack generation tree represents a hierarchy of the

malefactor’s intentions and actions of different levels which correspond to non-terminal

and terminal nodes. The non-terminal high level nodes are depicted by white ellipses.

The terminal nodes of the attack model correspond to blue nodes. The brown node is the

node of the current step of an attack scenario execution.

The transcriptions of the blue nodes can be seen in the section “Current non-

terminal node”.

All non-terminal nodes are realized as state machines.

When the attack scenario is been developed the strings with the following

elements are appeared in the white window:

 Braun strings in left part of the diagram are descriptions of the generated
terminal malefactor’s actions.

 The result of each malefactor’s action may be positive or negative. If the
result is positive, the square block (designating the tag of success) is green,
and green comments are printed from the right of the square block. The
negative result means that the action was done unsuccessfully. The negative
result is possible in two cases: if the attack is blocked by a firewall (in that
case, the indicator and the comment are red); if the network response is
negative (the indicator is grey, the comment is absent). When the string
“END: Attack is over” is appeared, this means that a scenario realization is
finished.

38

As shown in Figure 11, in the network attack implementation, each terminal

action is performed on each host of the network, and in case of success or the attack

being blocked by the firewall, right after the square block is the IP address of the host at

which that terminal attack action was directed.

In case of success, the comment contains the decoding of the result obtained

through that terminal action of the Hacker Agent, and the information obtained from the

Network Agent as a result of the attacker’s action (that information may be absent).

In case of the hacker’s attack being blocked, the comment contains information

on the reasons of the attack being blocked (either an illegal IP address of sender or

receiver was detected, or the specified attack signature was detected), as well as the name

of the firewall. If the attack was blocked on the level of the network firewall, then the IP

address of the network is placed at the start of the comment.

After completion of the attack scenario the message “END: Attack is over”

appears in the right part of the white window.

It is possible to look through the scenario tree by moving between the strings on

the diagram.

The current scenario realization can be finished by closing the main dialog

window. After that it is possible to begin another scenario.

Lastly, to stop an operation of agents it is necessary to press the button of an

output in windows “AIL Registry” and “AILab Agent Library :: Portal Component”.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

APPENDIX B

This appendix contains the results of Test Case 1 in Test Scenario 1.

Scenario 1

Test Case 1 - Run 1:

The MASDK tool is used to attack the network without any protective

mechanism. At micro-level simulation with the setup of actual network, we will examine

how fast the MASDK tool can infiltrate the network and set the backdoor at the hosts.

Screen 1: We can observe that the attacker is doing a reconnaissance on the target

network. The IP address and the service are identified by the attacker.

41

Screen 2: This screen shows that the attacker is doing a port scan on systems of

the target network. The attacker has also succeeded in gaining access to the systems of

the target network. The screen shows that the attack process is carried out without any

obstruction.

42

Screen 3: Shows that the attacker has succeeded in installing the backdoors on the

target systems for future access and at the same time covering the track of the attack.

43

Test Case 1 - Run 2:

This test case is utilizing the MASDK tool to attack the network that has installed

with protection mechanism 1 to 4. In the present version of MASDK simulation tool only

the network Firewall is available.

Screen 1: There is no response from the network to the attack activities that

carried out by the Hacker Agent.

44

Screen 2: The Firewall is able to block most of the attack activities. The Hacker

Agent has succeeded in identifying the services run in some of the network systems.

45

Screen 3: The Hacker Agent went on to identify the OS of the systems on the

network.

46

Screen 4: The Hacker Agent tried other form of attack to gather information but

was blocked by the Firewall.

47

Screen 5: The Hacker Agent succeeded in installing two systems with backdoor in

the network.

48

Screen 6: The Hacker Agent tried other form of attack but was blocked by

the Firewall.

49

Screen 7: The Hacker Agent repeat some of the attack cycle but was blocked by

the Firewall.

50

Screen 8: The Hacker Agent has obtained the password of the network systems.

51

Screen 9: The Hacker Agent has successfully installed two backdoors in the

network in the whole attack realization.

52

LIST OF REFERENCES

 [Cabrera 2001] Cabrera, J. B. D., Lewis, L., Qin, X., Lee, W., Prasanth, R. K.,
Ravichandran, B., and Mehra, R. K.. “Proactive detection of distributed denial of service
attacks using MIB traffic variables – A feasibility study.” In Proc. Int. Symposium on
Integrated Network Management, IEEE (Seattle, Wash., May 2001), pp. 609-622.

[Cherry 2003] Cherry, S. M. “Hell month,” IEEE Spectrum (Oct. 2003), p. 48.

[Cuppens 2002] Cuppens, F. and Miege, A. “Alert Correlation in a Cooperative Intrusion
Detection Framework.” In Proc. Symposium on Security and Privacy (Berkeley, Calif.,
May 2002), pp. 187-200.

[Dittrich 1999a] Dittrich, D. “The Stacheldraht Distributed Denial of Service Attack
Tool.” http://staff.washington.edu/dittrich/misc/stacheldraht.analysis. 31 Dec 1999.

[Dittrich 1999b] Dittrich, D. “The Tribe Flood Network Denial of Service Attack Tool.”
http://staff.washington.edu/dittrich/misc/tfn.analysis. 21 Oct. 1999.

[Dittrich 2003] Dittrich, D. “Distributed Denial of Service (DDoS) Attack Tools.”
[http://staff.washington.edu/dittrich/misc/ddos/]. Sept. 2003.

[Feinstein 2003] Feinstein, L., Schnackenberg, D., Balupari, R., and Kindred, D..
“Statistical approaches to DDoS attack detection and response.” In Proc. DARPA
Information Survivability Conf. and Expo., IEEE (Washington, D.C., Apr. 2003), vol. 1,
pp. 303-314.

[Gorodetsky 2003] Gorodetsky, V. I., Kotenko, I. V., and Michael, J. B. “Multi-agent
modeling and simulation of distributed denial-of-service attacks on computer networks.”
In Proc. Third Int. Conf. on Navy and Shipbuilding Nowadays, St. Petersburg: Krylov
Shipbuilding Research Institute (St. Petersburg, Russia), June 2003, pp. 38-47.

[Jain 1991] Jain, R. The Art of Computer Systems Performance Analysis. First Edition.
New York: John Wiley & Sons, 1991. p. 30.

[Jakobsson 2003] Jakobsson, M. and Menczer, F. “Untraceable Email Cluster Bombs:
On Agent-Based Distributed Denial of Service.” RSA Security and University of Iowa.
Unpublished manuscript. http://arxiv.org/PS_cache/cs/pdf/0305/0305042.pdf. May 2003.

[Kashiwa 2002] Kashiwa, D., Chen, E. Y., and Fuji, H. “Active shaping: A
countermeasure against DDoS attacks.” In Proc. Second European Conf. on Universal
Multiservice Networks, IEEE (Colmar, France, Apr. 2002), pp. 171-179.

[Kotenko 2003a] Kotenko, I., Gorodetski, V., Karsayev, O. and Khabalov, A. “Software
Development Kit for Multi-agent Systems Design and Implementation.” Russian

53

Foundation of Basic Research and European Office of Aerospace R&D (Project #1994P).
St. Petersburg Institute for Informatics and Automation, 2003.

[Kotenko 2003b] Kotenko, I. and Man’kov, E. “Experiments with Simulation of Attacks
against Computer Networks”. Computer Network Security, Second International
Workshop on Mathematical Methods, Models, and Architectures for Computer Network
Security MMM-ACNS 2003. St. Petersburg Institute for Informatics and Automation,
Sept. 2003, pp 183 - 194.

[Michael 2003] Michael, J. B., Fragkos, G., and Auguston, M. “An Experiment in
Software Decoy Design.” Security and Privacy in the Age of Uncertainty. Boston,
Mass.: Kluwer Academic Publishers, 2003, pp. 253-264.

[Mirković 2002] Mirković, J., Prier, G. and Reiher, P. “Attacking DDoS at the source.”
In Proc. Tenth Int. Conf. on Network Protocols, IEEE (Paris, France, Nov. 2002), pp.
312-321.

[Navratilova 2000] Viki Navratilova. “A brief history of Distributed Denial of service
Attacks”. Uniforum Chicago. Security Architect, BlueMeteor, Inc. 22 Aug. 2000.
http://www.uniforum.chi.il.us/slides/ddos/sld001.htm

[Ning 2002] Peng Ning, Yun Cui and Douglas S. Reeves. “Constructing attack scenarios
through correlation of intrusion alerts.” In Proc. Conf. on Computer and Communications
Security, IEEE (Nov. 2002), pp. 245-254.

[Paxson 2003] Paxson, V., Moore, D., Savage, S., Shannon, C., Staniford, S., and
Weaver, N. “Inside the Slammer Worm.” IEEE Security & Privacy (July-Aug. 2003). pp.
33-39.

[Scambray 2001] Scambray, J., McClure, S., and Kurtz, G. Hacking Exposed: Network
Security Secrets & Solutions. 2nd Edition. Berkeley, Calif.: McGraw Hill, 2001.

[Sterne 2002] Sterne, D., Djahandari, K., Balupari, R., La Cholter, W., Babson, B.,
Wilson, B., Narasimhan, P., Purtell, A., Schnackenberg, D., Linden, S.. “Active network
based DDoS defense.” In Proc. DARPA Active Network Conf. and Expo., IEEE (San
Francisco, Calif., May 2002), pp. 193-203.

[Sung 2002] Sung, M. and Xu, J. “IP traceback-based intelligent packet Filtering: A
novel technique for defending against Internet DDoS attacks.” IEEE Trans. Parallel and
Distributed Systems 14, 9 (Sept. 2003): 861-872.

[Vijayan 2003] Vijayan, J. “Blaster Variant May Cause DOS Attacks”. Department of
Homeland Security issues advisory.
http://www.computerworld.com/securitytopics/security/story. 2003.

54

[Zhao 2001] Zhao, W.-W. and Qin, S.-Y. “The diagnosis of DDoS attack and a novel
approach to optimizing control”. In Proc. Int. Conf. on Info-Tech and Info-Net, IEEE
(Beijing, China: Oct. 2001), pp. 278-283.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. James Bret Michael
Naval Postgraduate School
Monterey, Calif.

4. Mikhail Auguston
Naval Postgraduate School
Monterey, California

5. Igor Kotenko
St. Petersburg Institute for Informatics and Automation
St. Petersburg, RUSSIA

6. Vladimir Gorodetsky
St. Petersburg Institute for Informatics and Automation
St. Petersburg, RUSSIA

7. Yeo Tat Soon

Temasek Defense System Institute
Singapore

